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Solution 1(i): As the map f is a local chart, f is immersion. Hence, for a point (s, t) ∈
(0, 2π)× (0, 2π), the total derivative Df(s, t) : R2 → R3 is injective. The tangent space T(s,t)(T

2)
is the image of the linear map D(s,t)f . Therefore, T(s,t)(T

2) is generated by the set {∂f/∂s, ∂f/∂t},
where ∂f/∂s = (− sin s cos t,− sin s sin t, cos s) and ∂f/∂t = (−(2 + cos s) sin t, (2 + cos s) cos t, 0).

Solution 1(ii): The submanifold T 2 of R3 is covered by four smooth local charts f1, f2, f3 and f4
where f1 : (0, 2π)× (0, 2π)→ R3 is given by:

f1(s, t) = ((2 + cos s) cos t, (2 + cos s) sin t, sin s),

f2(s, t) : (0, 2π)× (0, 2π)→ R3 is given by:

f2(s, t) = ((2− cos s) cos t, (2− cos s) sin t,− sin s),

f3 : (0, 2π)× (0, 2π)→ R3 is given by:

f3(s, t) = (−(2 + cos s) cos t,−(2 + cos s) sin t, sin s),

and f4 : (0, 2π)× (0, 2π)→ R3 is given by:

f4(s, t) = (−(2− cos s) cos t,−(2− cos s) sin t,− sin s).

Therefore a point (x, y, z) is a critical point of g on T 2 if (x, y, z) = fi(si, ti) where (si, ti) is a
critical point of g ◦ fi, i = 1, 2, 3, 4. A point (s1, t1) is a critical point of g ◦ f1 if and only if the
linear map D(s1,t1)(g ◦ f1) is a zero map. That means

∂(g ◦ f1)
∂s

(s1, t1) = 0 =
∂(g ◦ f1)

∂t
(s1, t1).

This implies that (s1, t1) is a critical point of g ◦ f1 if and only if

− sin s1 cos t1 = −(2 + cos s1) sin t1 = 0.

Solving the above equality, we see that (−π,−π) is the critial point of the map g ◦ f1. Similarly,
we can prove that (−π,−π) is a critical point of g ◦ fi for each i = 2, 3, 4. Hence, points

(−1, 0, 0), (−3, 0, 0), (1, 0, 0) and (3, 0, 0)

are the four critical points of the map g on T 2.

Solution 2(i): LetM be of dimensionm andN be of dimension n. Let p ∈M be an arbitary point.
As f is a submersion, by submersion theorem, there is a coordinate neighborhoods (Up, φ) of p in
M and (Vp, ψ) of f(p) in N such that f(Up) = Vp and the transition map ψ ◦ φ−1 : φ(Up)→ ψ(Vp)
is the standard projection

(x1, x2, . . . , xn, xn+1, . . . , xm)→ (x1, x2, . . . , xn).

As the standard projection maps are open, the image f(Vp) is open.
Now, if U is an open subset of M , then

U =
⋃
p∈M

(U
⋂

Up).
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Therefore,

f(U) =
⋃
p∈M

f(U
⋂

Up).

As each f(U
⋂
Up) is open in Vp and hence, f(U

⋂
Up) is open in N . This implies that f(U) is

open in N . This proves that any submersion map is an open map.

Solution 2(ii): As f is an open map, the image f(M) is an open subset of N . On the other
hand, as M is compact, the image f(M) is compact, and hence closed subset of N . Since N is
connected, we have N = f(M). Hence, f is surjective.

Solutions 3(i): Note that a matrix A has distinct eigenvalues if the characteristic polynomial
P (A) has no repeated roots. The polynomial P (A) has no repeated roots if the resultant of P (A)
with its derivative P ′(A) is non-zero. As this condition is open condition we conclude that set of
(2× 2) matrices with real and distinct roots are open subsets of M(2,R).

Solutions 3(ii): To prove this it is enough to prove that the derivative D(A,x)f is a non-zero linear
map. Now by Submersion theorem, f−1(0) is a smooth 4-dimensional manifold.

Solutions 4(i): Let x ∈ M be a local maximum or local minimum of the smooth function
f : M → R. There is a coordinate neighborhood (Ux, ψ) of x in M such that ψ(x) is maximum
or minimum of the function f ◦ψ−1. Consider the basis {∂/∂x1, ∂/∂x2, . . . , ∂/∂xn} of the tangent
space Tψ(x)ψ(Ux). Corresponding to each basis vector ∂/∂xi, let αi : Vi → ψ(Ux) be a smooth map
such that Vi is an open neighborhood of 0 ∈ R with αi(0) = ψ(x) and the derivative α′i(0) = ∂/∂xi.
Now the point 0 is a local maximum or a local minumum of the function f ◦ ψ−1 ◦ αi : Vi →
R. By the calculus on one variable, the derivation (f ◦ ψ−1 ◦ αi)′(0) = 0. This implies that
Dψ(x)(f ◦ψ−1)(∂/∂xi) = 0. Hence, the linear map Dψ(x)(f ◦ψ−1) is a zero map. This implies that
the derivative Dxf : TxM → R is a zero map.

Solution 4(ii): Consider the function f1 : M → R given by f1(x) = ||x||2. The derivation
Dxf1 : TxM ⊂ Rn → R is given by Dxf1(v) = 2x · v, where x · v is the standard inner product
on Rn. Note that a local extremum of the function f is also a local extremum of the function f1.
Suppose x is a local extremum of f , then the derivation Dxf1 is a zero map. This means that
x · v = 0 for all v ∈ TxM . Hence the vector x ∈ Rn is normal to the tangent space TxM ⊂ Rn.
As Dxg is also normal to TxM , and TxM is (n− 1) dimensional subspace of Rn, we conclude that
Dxg and x are scalar multiple of each other.


