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Solution 1(i): As the map f is a local chart, f is immersion. Hence, for a point (s,t) €
(0,2m) x (0,2m), the total derivative Df(s,t) : R* — R? is injective. The tangent space T(s4 (1)
is the image of the linear map Dy, ) f. Therefore, T(s4(T7?) is generated by the set {df/0s,0f /0t},
where 0f/0s = (—sinscost, —sinssint, coss) and f /0t = (—(2 + cos s)sint, (2 + cos s) cost, 0).

Solution 1(ii): The submanifold 72 of R? is covered by four smooth local charts fy, fa, f3 and f4
where f; : (0,27) x (0,27) — R3 is given by:

fi(s,t) = ((2 4 cos s) cost, (24 cos s) sint, sin s),
fa(s,t) : (0,27) x (0,27) — R? is given by:
fa(s,t) = ((2 — cos s) cost, (2 — cos s) sint, —sin s),
f3:(0,27) x (0,27) — R? is given by:
f3(s,t) = (—(2+ cos s) cost, —(2 4 cos s) sint, sin s),
and fy: (0,27) x (0,27) — R3 is given by:
fa(s,t) = (—(2 — cos s) cost, —(2 — cos s) sint, —sin s).

Therefore a point (z,y, z) is a critical point of g on T? if (x,y,2) = fi(ss,t;) where (s;,t;) is a
critical point of g o f;, i = 1,2,3,4. A point (s1,¢;) is a critical point of g o f; if and only if the
linear map Dy, 4,)(g © f1) is a zero map. That means
d(go f) d(g o f1)
28 I 50 4) = 0= =LV (5 1),
55 vt or i)

This implies that (s1,¢;) is a critical point of g o f; if and only if
—sin sy cost; = —(2 4 cos sp) sint; = 0.

Solving the above equality, we see that (—m, —) is the critial point of the map g o f;. Similarly,
we can prove that (—m, —) is a critical point of g o f; for each i = 2,3, 4. Hence, points

(—=1,0,0),(—3,0,0), (1,0,0) and (3,0,0)

are the four critical points of the map g on T2.

Solution 2(i): Let M be of dimension m and N be of dimension n. Let p € M be an arbitary point.
As f is a submersion, by submersion theorem, there is a coordinate neighborhoods (U, ¢) of p in
M and (V,, %) of f(p) in N such that f(U,) =V, and the transition map ¢ o ¢~ : ¢(U,) — ¥(V,)

is the standard projection
(X1, T2y e oy Ty Tt 1y -+ s Ti) —> (X1, Ty oo oy Tp).

As the standard projection maps are open, the image f(V},) is open.
Now, if U is an open subset of M, then

U= JUN)

peEM
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Therefore,
ry=U fwNu.
peEM
As each f(U(U,) is open in V, and hence, f(U [\ U,) is open in N. This implies that f(U) is
open in N. This proves that any submersion map is an open map.

Solution 2(ii): As f is an open map, the image f(M) is an open subset of N. On the other
hand, as M is compact, the image f(M) is compact, and hence closed subset of N. Since N is
connected, we have N = f(M). Hence, f is surjective.

Solutions 3(i): Note that a matrix A has distinct eigenvalues if the characteristic polynomial
P(A) has no repeated roots. The polynomial P(A) has no repeated roots if the resultant of P(A)
with its derivative P'(A) is non-zero. As this condition is open condition we conclude that set of
(2 x 2) matrices with real and distinct roots are open subsets of M (2, R).

Solutions 3(ii): To prove this it is enough to prove that the derivative D4, f is a non-zero linear
map. Now by Submersion theorem, f~!(0) is a smooth 4-dimensional manifold.

Solutions 4(i): Let x € M be a local maximum or local minimum of the smooth function
f: M — R. There is a coordinate neighborhood (U,, ) of x in M such that ¥ (z) is maximum
or minimum of the function fo~!. Consider the basis {0/dz1,d/0x,,...,0/0x,} of the tangent
space Ty ()1 (U,). Corresponding to each basis vector 0/0x;, let a; : V; — ¥(U,) be a smooth map
such that V; is an open neighborhood of 0 € R with «;(0) = ¢ (z) and the derivative o/ (0) = 9/0x;.
Now the point 0 is a local maximum or a local minumum of the function fo¢toq; : V; —
R. By the calculus on one variable, the derivation (f o ¢! o «;)'(0) = 0. This implies that
Dy)(fop™1)(8/0z;) = 0. Hence, the linear map Dy, (f 0¢™1) is a zero map. This implies that
the derivative D, f : T,M — R is a zero map.

Solution 4(ii): Consider the function f; : M — R given by fi(z) = ||z||>. The derivation
D.fi : T,M C R*" — R is given by D, fi(v) = 2z - v, where x - v is the standard inner product
on R™. Note that a local extremum of the function f is also a local extremum of the function f;.
Suppose x is a local extremum of f, then the derivation D, f; is a zero map. This means that
x-v =0 for all v € T, M. Hence the vector z € R" is normal to the tangent space T,M C R".
As D,g is also normal to T, M, and T,,M is (n — 1) dimensional subspace of R", we conclude that
D,g and x are scalar multiple of each other.



